2.7 Maximum likelihood and the Poisson distribution

Our assumption here is that we have N independent trials, and the result of each is n_{i} events (counts, say, in a particle detector). We also assume that each trial has the same population mean μ, but the events follow a Poisson distribution.
The probability of n_{i} is then

$$
\operatorname{prob}\left(n_{i}\right)=\frac{e^{-\mu} \mu^{n_{i}}}{n_{i}!}
$$

and so the likelihood for the whole set $n_{1}, n_{2} \ldots$ is

$$
\mathcal{L}(\operatorname{data} \mid \mu)=\frac{e^{-\mu} \mu^{n_{1}}}{n_{1}!} \times \frac{e^{-\mu} \mu^{n_{2}}}{n_{2}!} \ldots
$$

or, more simply,

$$
\log \mathcal{L}(\text { data } \mid \mu)=-N \mu+\left(\sum_{i} n_{i}\right) \log \mu+\text { constant }
$$

It seems natural to pick as an estimate of μ the value that maximizes the likelihood (or its logarithm); the differentiation is easy and we get

$$
\hat{\mu}=\frac{1}{N} \sum_{i} n_{i}
$$

which is intuitive.
Maximizing the likelihood makes sense to a Bayesian because we are finding the peak of the posterior probability of μ, in the special case where the prior on μ is flat over the region where the likelihood is appreciable.

